一、测量数据的B样条曲线逼近算法(论文文献综述)
冯峰[1](2021)在《基于三次B样条曲线的一些算法研究》文中指出B样条具有局部性与光滑性等良好的性质,能够灵活地表示复杂的自由型曲线和曲面,因此在计算机辅助几何设计等领域应用广泛.我们在本文中分别研究了 B样条在曲线演化问题和曲线矢量数据压缩问题中的应用,并由此提出了求解曲线演化问题的三次B样条参数有限元方法和一种带约束的三次B样条曲线矢量数据压缩算法.曲线演化问题属于一类常见的几何演化问题,通常由特定的时空相关的非线性几何偏微分方程所决定,我们将三次B样条应用于参数有限元方法中,用来求解平均曲率流和表面扩散流下平面闭曲线的演化问题.我们首先利用三次B样条有限元对曲线演化问题的变分形式进行离散,得到了基于三次B样条的空间半离散格式,随后应用半隐式方法在时间上进行离散,从而得到了该变分形式的全离散格式.同时,我们还引入了 Hausdorff距离和流形距离这两种度量方式来衡量闭曲线间的距离,并针对具有不同连续性的三次B样条曲线插值算例,展示了这两种距离度量的差异.在平均曲率流和表面扩散流下曲线演化的若干数值模拟算例表明,相对于传统线性参数有限元方法的二阶误差收敛阶,我们所提出的三次B样条参数有限元方法能够达到四阶误差收敛阶,其数值算例证实了我们所提出算法的优越性.为了便于大型矢量数据高效的检索分析,存储和传输,事先对矢量数据进行压缩是极为必要的.基于B样条良好的局部性和光滑性,我们利用带约束条件限制的三次B样条逼近方法对曲线矢量数据进行压缩.为了验证所提出算法的高效性,我们给出了 9种不同的曲线矢量数据压缩算例,并同时与传统的Douglas-Peucker矢量压缩算法进行对比.数值算例结果表明,我们所提出的曲线矢量数据压缩算法明显优于传统的Douglas-Peucker压缩算法.该算法不仅能够保证曲线整体的二阶光滑性以及满足压缩过程中对首尾端点的约束要求,还能够显着地降低数据的压缩率,因而在自动驾驶等领域具有广泛的应用前景.
邵闯[2](2021)在《面向自动驾驶的认知地图的自动生成算法与实现》文中认为为了解决基于激光雷达3D点云的高精度地图面临车载传感器昂贵和算力需求高的挑战,学界提出低成本、数据量小、定位精度适中的认知地图方案。当前认知地图主要是依赖路标与车道线之间的几何关系完成车辆定位,局部定位精度有待进一步提高。此外,在路标缺失情况下车辆全局定位面临挑战。为此,本文首先提出了实时矢量化地图建模方案,使用矢量化地图替代离散点地图,支撑基于道路几何形状对车辆定位方案,从而提高了车辆的局部定位精度。为了解决车辆全局定位问题,本文采用了基于车端视角的地点识别算法,实现了大尺度下车辆全局位置估计的地点识别方案。本文主要研究内容如下:(1)为了支撑基于道路连续性几何形状的车辆局部定位方案,提出了实时矢量化地图建模算法。认知地图采用分层结构,共分为四层:道路层、车道层、语义层以及动态信息层。既有的认知地图车道层是采用离散的数据点来表示道路的,无法获得道路连续的几何特性,影响车辆定位的精度。为此,本文在车道层中使用矢量化地图替代离散点地图,并且为其提出了实时矢量化车道级地图建模算法,实现了车道层的自动生成。(2)为了解决车辆全局定位问题,基于车端视角的地点识别算法,实现了大尺度下车辆全局位置估计的地点识别方案。传统的自动驾驶地图需要时刻知道自车的全局位置信息,否则将无法实现导航功能。本文提出基于车端视角的地点识别算法可以仅依赖于视觉完成大尺度下车辆全局位置估计,从而为导航功能所服务。(3)本文使用实时矢量化车道级地图建模算法,完成了清水河校区内的车道层自动生成实验,并保证其误差在厘米级范围内。本文在清水河校区内完成了对基于车端视角的地点识别算法的验证,其识别率达到百分之九十以上。
高飞[3](2021)在《五轴加工线性微小刀具路径的三NURBS保精光顺插值方法研究》文中研究指明随着复杂自由曲面在与工业相关的各个领域应用日益增多,五轴数控机床加工复杂型曲面受到了广泛的关注。得益于NURBS(Non-Uniform Rational B-Splines,非均匀有理B样条)曲线在数学与算法上具有良好的性质,使得NURBS曲线在数控加工领域得到了极大的普及。但较国外发达国家的数控加工技术相比,我国的数控加工技术仍处于落后阶段。因此,继续开发具有NURBS曲线数控加工功能的数控机床对于提高我国现阶段的制造业整体水平具有重要的实际意义。考虑到上述实际问题,本文进行了面向五轴加工线性微小刀具路径的保证插值精度条件下的三NURBS光顺插值技术方面的课题研究工作。课题主要研究内容分为以下两个部分:(1)研究了NURBS曲线的插值方法。针对数控编程加工阶段生成的海量离散刀位数据,在满足插值精度的情况下,提出了一种基于曲率自适应选取特征点的NURBS曲线插值方法。首先,计算各个离散数据点的曲率,将曲率信息作为依据进行分段点、曲率极大值点等特征数据点选取,然后构造初始NURBS插值曲线并计算插值误差;其次,在超出预设插值误差的曲率段内增加新的特征点,并生成新的NURBS插值曲线;重复上述过程,直至所有不在NURBS插值曲线上的数据点都满足插值精度条件为止。最后利用MATLAB进行实际数据的仿真验证,结果表明本文提出的方法即便去除了大量原始刀位数据时也能更好地保留原始数据曲线在外形和精度方面的特征。(2)研究了三NURBS保精光顺插值方法。首先,针对一组数据点可以压缩数据的情况下满足精度并进行样条插值情形,提出了一种同时进行三条样条曲线保精插值的协调数据处理方法。其次,为更好的处理刀具与零件表面间的切削接触行进轨迹的精度问题,本文在现有双NURBS样条加工轨迹的基础上构造一种含刀触点的三NURBS曲线的刀具轨迹,提出了一种基于对偶四元数法的五轴加工三NURBS保精光顺插值方法。该方法通过从对偶四元数角度进行刀路光顺插值的研究,采用对偶四元数方法进行节点矢量的计算,之后插值构造刀心点、刀轴矢量点以及刀触点的NURBS曲线,最终得到满足误差精度要求且得到1G以上连续的三NURBS光顺插值刀具路径。借助MATLAB进行仿真实验验证,结果表明本文方法较现有的线性刀路插值方法在刀具路径光顺程度和刀位数据点的压缩量方面都具有显着优势,证明本文方法在三NURBS光顺插值方面的有效性。
徐嘉星[4](2020)在《高铁白车身腻子在线检测修磨技术研究及实现》文中研究表明如今基于离线轨迹规划控制机器人打磨的应用越来越广,但是高铁白车身由于手工刮涂腻子后随机产生局部高点缺陷,通过离线整体打磨后仍会有残留。因此本文提出在线检测修磨方案:将双目结构光检测系统、重构曲面、轨迹规划和机器人打磨作业结合,形成一套自动化的针对高点缺陷的修磨系统。针对高点缺陷检测方面,提出了一种基于最小二乘拟合的法平面投影筛选方法,通过拟合每行投影点云得到基准直线筛选高点缺陷点云。然后为了聚类分布散乱的缺陷点云,提出了一种基于欧几里得k-d tree(K-dimension tree)的网格聚类方法,根据所包含缺陷点云的凸起高度和数量聚类各个缺陷区域获得包围盒数据。最后测试单块点云缺陷提取的平均时间为1.76s,满足在线检测连续性的要求。针对在线轨迹规划方面,根据BSpline曲线的累积弦长参数法,利用缺陷包围盒边界点重构曲面。然后根据等弦高误差和等残留高度法对重构曲面进行轨迹规划,获得打磨车体表面缺陷的轨迹信息。针对自定位打磨,根据系统布局提出了一种基于视觉系统的相对位置打磨法,使机器人能精准打磨车体表面随机出现的缺陷。最终通过总控软件远程控制机器人,实现了自定位打磨作业工序。基于Opencascade三维开源造型库自主开发了机器人仿真软件,初步验证机器人打磨系统的可操作性。最后该系统在青岛四方机车车辆厂进行应用测试:根据打磨工具AOK(Active Orbital Kit)的实时压缩量,得出打磨过程中AOK与车体表面法向的贴合误差在4mm以内;其次测量打磨后缺陷区域的平均粗糙度为2.722μm满足工艺要求,验证了在线检测修磨系统可以作为机器人离线整面研磨前的缺陷去除工序。
庞飞彪[5](2020)在《复杂轮廓曲线零件高质量加工技术的研究》文中研究指明复杂轮廓曲线零件广泛应用于航空航天、船舶、汽车制造等领域。随着复杂轮廓曲线零件在各应用领域需求越来越大,复杂轮廓曲线零件的加工技术显的十分重要,尤其是刀具路径轨迹规划及实时插补技术已成为复杂轮廓曲线零件加工的研究热点。本文系统地研究了国内外关于复杂轮廓曲线加工刀具路径规划及实时插补技术,对复杂轮廓曲线加工的刀具路径规划及实时插补的若干关键技术进行了深入研究。针对复杂轮廓曲线局部刀具路径平滑处理,提出了一种基于公差带约束的刀位点调整与C3连续5次B样条曲线刀具路径拐角的过渡算法;在符合公差带约束的情况下,根据转接误差将刀位点在误差敏感方向上进行调整,可有效降低微小直线逼近误差;采用5次B样条曲线进行拐角过渡,实现了刀具路径的平滑转接,刀具路径拐角过渡转接分为两类转接方式并采用不同约束条件求解,提高了过渡转接样条曲线的求解效率;基于MATLAB仿真软件验证了算法的有效性,可以大大降低采用样条曲线产生的拐角过渡误差。针对复杂轮廓曲线刀具路径全局平滑处理,提出了满足全局切向矢量约束的NURBS曲线插值拟合算法;对刀具路径进行插补分段,根据分段后各NURBS插值拟合段两端端点类型,将NURBS插值拟合分为三种类型;在各插补段中提取特征点,对特征点采用全局切向矢量约束插值拟合方法,通过迭代生成满足拟合精度的NURBS曲线,采用MTALAB仿真软件验证全局切向矢量插补拟合算法的正确性,结果证明算法可有效提高插值同样特征点的拟合误差。提出改进的7段S型加减速策略;采用预估校正法对NURBS曲线参数密化得到插补点信息,求出满足最大弓高误差、最大加工速度及最大法向加速度的插补速度,计算出最短加速段加工路径长度S加和最短减速段加工路径长度S减,判断速度敏感点之间的加工路径长度与S加+S减之间的大小关系,采用不同类型的S型速度规划策略完成整条加工路径的速度规划,采用MATLAB验证提出的NURBS插补算法,实验证明算法可在满足加工误差的情况下提高NURBS曲线加工速度。
刘钊[6](2020)在《基于点云数据的曲率急变曲面高精重构方法》文中研究说明随着我国在运载、能源、国防等领域的快速发展,对具有曲率急变曲面的复杂零件加工精度提出了更高的要求。为保证该类零件极高的加工精度,常采用测量-加工一体化闭环控制策略,对测点进行高精度曲面重构并计算加工余量以服务于反馈补偿加工刀具轨迹规划。目前面向曲率急变曲面点云的曲面重构技术仍存在以下不足:其一,曲率急变曲面零件面形复杂,测量数据量巨大,采用高阶曲面进行重构容易产生数值波动现象;其二,曲率急变曲面具有几何特征分布不均匀的特点,采用常规曲面重构方法对其进行曲面重构,在曲面几何形状复杂的区域容易超差,降低了曲面重构质量。针对上述问题,本文展开面向曲率急变曲面散乱点云数据的NURBS曲面重构方法研究,提出了节点矢量自适应优化算法以及NURBS曲面局部优化算法,实现了曲率急变曲面点云高精度曲面重构,具体研究内容如下:(1)虑及复杂曲面几何特征的节点矢量自适应优化算法,以提高重构曲面对复杂几何特征的逼近能力。通过构造用于评价曲面复杂程度的几何特征评价函数,评价了初始重构曲面上各节点区间对应的局部曲面面形复杂程度,然后在几何特征复杂区域插入节点,并采用粒子群算法优化插入节点的具体位置,实现了虑及几何特征的节点矢量自适应优化。(2)基于局部控制点调整的NURBS曲面局部优化算法。首先采用节点插入技术提高超差区域形状控制的灵活性;然后利用NURBS曲面的局部支撑性质,提取与超差区域对应的局部控制点,构建超差区域与影响区域多目标优化函数;最后,采用线性加权法、拟牛顿法对该多目标优化函数进行求解,实现对NURBS曲面超差区域局部优化。(3)基于MATLAB为开发平台,形成了面向曲率急变曲面点云高精曲面重构的辅助软件。利用MATLAB-GUI制作了重构辅助软件的操作界面,分别编写了节点矢量自适应优化算法、NURBS曲面局部优化算法函数文件。本文编写的曲面重构软件集成了节点矢量自适应优化与局部优化功能。本文提出的虑及复杂曲面几何特征分布不均匀的节点矢量自适应优化算法生成的节点矢量在曲面几何特征复杂的区域具有更密集的节点,结合NURBS曲面局部优化算法,可显着提高重构曲面的重构精度,实现曲率急变曲面点云的高精度曲面重构,对提高曲率急变曲面零件制造精度具有重要的意义。
杨红云,路艳,孙爱珍,杨乐[7](2020)在《水稻叶片几何参数无损测量方法研究》文中研究表明【目的】提出实现自然生长状态下的水稻叶片几何形态参数视觉无损测量,为实时监控水稻的生长状况提供准确的数据,也为农学研究者提供新的技术手段。【方法】类似曲线长度细线测量方法,在叶脉上通过手势交互绘制确定一组控制点,插值生成过控制点的3次B样条曲线,调整控制点使得B样条曲线逼近叶脉方式实现水稻叶片长度测量。在叶片最大叶宽处绘制1次B样条曲线实现水稻叶片最大叶宽测量。采用基于4个方向模板运算的距离变换算法对茎叶夹角图像进行骨架信息提取,并利用Hough变换对提取的骨架信息进行直线检测实现茎叶夹角计算。应用BP神经网络、支持向量机回归和随机森林回归算法对样本数据进行训练,以水稻叶片长度、叶片最大宽度作为输入变量对水稻叶面积进行估测。【结果】B样条曲线逼近方式计算的水稻叶长的平均绝对误差和平均相对误差分别为0.523 3 cm和2.33%,叶宽的平均绝对误差和平均相对误差分别为0.055 2 cm和6.66%。Hough变换计算的茎叶夹角平均绝对误差和平均相对误差分别为1.27°和2.46%;通过对金优458和中早35两个不同品种结果对比,相较于其他模型,发现BP神经网络模型对叶面积估测结果的均方根误差、平均绝对误差和平均相对误差分均为最低,其中JY458品种的均方根误差、平均绝对误差及平均相对误差分别为1.189 2 cm2、1.061 cm2和4.95%,ZZ35品种的均方根误差、平均绝对误差及平均相对误差分别为1.143 1 cm2、0.959 5 cm2和4.85%。【结论】从图像采集到测量操作过程都不与被测叶片器官进行接触,真正意义上实现了对水稻叶片几何形态参数的无损测量,且操作便捷,测量精度高,误差小,完全能够满足农学研究的需求,为其他植物器官的几何形态参数无损测量提供了一种新的普适方法。
刘武飞[8](2020)在《B样条曲线的光顺重构研究》文中研究表明针对逆向工程现有的曲线光顺重构技术中很难同时考虑重构曲线的逼近误差和曲线光顺性的问题,论文结合粒子群算法的优势,展开了对曲线光顺重构方法的系统研究,提出了一种3次B样条曲线光顺重构算法及一种任意次数B样条曲线光顺重构算法。针对3次的B样条曲线重构,给出了一种改进的3次B样条曲线光顺重构算法。首先根据B样条曲线的最小二乘拟合模型,分析了已有B样条曲线光顺重构技术中存在的问题;再通过设置不同的光顺性指针建立了曲线的光顺重构模型:采用最小二乘拟合模型拟合出曲线误差满足逼近精度且误差值足够小的初始曲线,得到初始曲率;再基于曲线初始曲率值前的符号变化情况,找出可能导致曲线上出现拐点的曲率符号不良点及不良区域,优先对曲率符号不良点和不良区域进行曲率符号光顺;最后以曲率变化情况为依据,针对曲率变化剧烈点进行曲率变化光顺。且基于曲率差点和最差点处的基函数值为依据,提出了同时调整主、副多个控制点的光顺策略,有效地提高了重构曲线光顺过程的光顺效率;将逼近精度作为粒子群算法的约束条件,对算法中粒子的搜索空间加以限制,对整个光顺进程中产生的重构曲线的曲线误差加以控制。面对任意次数的B样条曲线,在改进的3次B样条曲线光顺重构算法基础上又进行了新的改进。在构造初始曲线的逼近函数中添加描述光顺性的光顺函数,并分别在逼近函数和光顺函数前添加系数因子,通过选取合适的系数因子组合,可以输出满足精度要求且光顺性好的初始曲线。将其作为算法光顺进程的输入可以缩短曲线光顺进程的时间;且基于曲线上点的基函数值分布情况,给出了一种更灵活的控制点调整策略,更进一步地提高了曲线光顺进程的光顺效率。本文提出的两种算法都已经在MATLAB软件上成功编程并得到了实现。在文中给出了多个曲线光顺重构的实例,演示并论证本文算法在曲线曲面重构中的有效性和实用性。
刘尊民[9](2019)在《小波降噪和时空轨迹数据精细化理论及在采油集输监控系统的应用》文中认为石油产业属于高科技密集型产业,信息化实施的程度将直接影响其竞争能力。采油集输监控是油田数字化建设的重要基础,随着通信、计算机及自动化技术的进步,智能监控系统在油田生产环节中的应用越来越广泛,智能油田、智慧油田已经成为油田的重要发展方向。采油集输监控系统的开发过程中发现,数据质量直接影响系统性能及应用效果,如何消除信号噪声、提高数据质量是智慧油田建设的关键共性技术之一。因此,本文以胜利油田集输监控项目为研究背景,以数据质量优化为核心展开研究,对现场采集传感器信号、时空信号两大类数据进行去噪处理,在此基础上对产液量计量方法、偏远井拉运轨迹里程统计方法及采油集输监控系统故障识别方法进行智能优化及应用技术研究。主要研究内容如下:(1)针对采油集输监控系统现场数据的噪声问题,提出了一种改进小波降噪方法。基于Mallat算法对油田现场传感器信号的降噪处理过程进行描述,提出了一种基于分层变异系数的新阈值方法,并对传统软硬阈值函数进行改进,对其性质进行验证。最后对典型现场功图数据采用新阈值及改进阈值函数法进行信号分解与重构,并通过与传统方法的去噪效果对比,对优化改进算法进行验证。(2)在对地面功图数据去噪处理的基础上,针对传统功图计量方法误差较大的问题,提出了一种适于油井现状的改进功图计量方法。建立了杆式抽油机杆柱系统模型及功图计量算产模型,在泵功图特征曲线分析基础上,提出了一种基于弦长的功图散点曲率计算方法,实现了有效冲程的精确计算及油井产液量折算。最后对不同计量方式的误差进行了对比分析,分析结果表明,该优化方法的计量误差小于10%,满足生产要求,验证了该方法的适用性与可行性。(3)针对低频时空定位信号存在的各类误差,提出了一种时空轨迹数据精细化处理算法。采用重心法处理零点漂移信号,采用速度阈值法处理大误差点数据,通过航向角矢量法识别后采用投影法处理偏移路线小误差点,并对缺失数据分类进行补偿。在此基础上,提出了一种基于二次B样条曲线的轨迹拟合方法,并基于轨迹曲线控制点数据推导建立了精确里程统计公式。最后对不同里程统计方法的结果进行了实验对比分析,结果表明,新方法所测得的里程与实际里程误差在1%之内,满足精确里程统计的要求。(4)针对目前油田集输监控系统复杂性增加导致故障定位困难且不准确的问题,提出了一种基于过程数据的双链路故障精确识别方法。在网络链路层对过程数据的间隔阈值进行研判后,采用多维度反推演的方法,实现了网络设备及通信适配器故障的快速精确定位。在数据链路层采用主成份分析法对过程数据进行质量分析,实现了终端设备的故障精确定位。最后基于该方法对系统故障识别结果进行了验证分析。(5)在前述理论和算法研究基础上,完成了采油集输监控系统的整体方案架构及各模块开发,并应用于油田现场。该监控系统包括:联合站监控系统平台,油井计量及监控平台,偏远井拉运监控平台等多个子平台,现场应用效果良好。本文的研究成果对采油集输监控系统的设计开发具有一定的指导意义,对油田数字化、智能化建设进程起到一定的推动作用,兼具科学研究意义和工程应用价值。
董祉序,徐方素,孙兴伟,刘伟军[10](2019)在《基于改进精英克隆选择算法的B样条曲线逼近方法》文中研究指明提出一种改进的精英克隆选择算法(ECSA)来实现B样条曲线逼近的自动节点配置。为了提高算法搜索效率和求解质量,设计了自适应混沌变异算子,同时提出了基于抗体浓度和抗原亲和力矢量矩的抗体重选择策略,再以贝叶斯信息准则(BIC)为亲和力度量来权衡拟合优良性和计算复杂度,改进的算法在深度搜索和广度寻优之间取得了平衡,可以自动且精确地计算内节点数量和位置,从而完成数据点的B样条曲线逼近工作。仿真和实验结果表明,提出的方法不仅可以高效精确地实现对存在连续、不连续、尖点等特征含噪复杂数据的自动B样条曲线逼近,而且相比于现有研究,具有更好的全局收敛性和收敛速度。
二、测量数据的B样条曲线逼近算法(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、测量数据的B样条曲线逼近算法(论文提纲范文)
(1)基于三次B样条曲线的一些算法研究(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景及意义 |
1.1.1 B样条的研究背景及意 |
1.1.2 几何演化问题的研究背景及意义 |
1.1.3 矢量数据压缩问题的研究背景及 |
1.2 国内外研究现状 |
1.2.1 几何演化问题的研究现 |
1.2.2 矢量数据压缩问题的研究现状 |
1.3 本文主要研究内容 |
2 B样条曲线理型 |
2.1 B样条基函数 |
2.2 B样条曲线 |
2.2.1 B样条曲线基本定义及性质 |
2.2.2 B样条闭曲线 |
2.2.3 B样条开曲线 |
2.3 B样条曲线插值与逼近方法 |
2.3.1 数据点的参数化 |
2.3.2 B样条曲线插值方法 |
2.3.3 B样条曲线逼近方法 |
3 求解曲线演化问题的三次B样条参数有限元方法 |
3.1 变分形式 |
3.2 三次B样条参数有限元离散 |
3.3 曲线间距离度量 |
3.3.1 Hausdorff距离 |
3.3.2 流形距离 |
3.3.3 B样条曲线插值算例 |
3.4 数值结果 |
3.4.1 收敛阶 |
3.4.2 数值模拟 |
4 带约束的三次B样条曲线矢量数据压缩算法 |
4.1 Douglas-Peucker算法 |
4.2 带约束三次B样条曲线逼近与压缩算法 |
4.3 数值模拟 |
5 总结与展望 |
参考文献 |
致谢 |
(2)面向自动驾驶的认知地图的自动生成算法与实现(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1.研究背景与意义 |
1.2.国内外研究现状 |
1.2.1.自动化驾驶地图的国内外现状 |
1.2.2.车道级地图的国内外现状 |
1.2.3.地点识别的国内外现状 |
1.3.研究内容 |
1.4.章节安排 |
第二章 认知地图的系统架构设计 |
2.1.引言 |
2.2.认知地图的总体设计框架 |
2.3.道路层的结构与定义 |
2.3.1.header(认知地图信息头) |
2.3.2.road Node(道路节点) |
2.3.3.road(道路) |
2.4.车道层的结构与定义 |
2.4.1.simple Lane(简单车道) |
2.4.2.Junction(路口) |
2.5.语义层的结构与定义 |
2.5.1.语义层中地点识别的结构与定义 |
2.5.2.语义层中交通标志的结构与定义 |
2.6.本章小结 |
第三章 车道层中矢量化车道级地图的生成方案 |
3.1.引言 |
3.2.车道层生成方案 |
3.3.认知地图中的坐标系 |
3.3.1.全球地理坐标系 |
3.3.2.高斯直角坐标系 |
3.3.3.局部坐标系 |
3.4.简单车道的生成方案 |
3.4.1.道路中心坐标原始值滤波算法 |
3.4.2.实时矢量化道路建模算法 |
3.5.路口的生成方案 |
3.5.1.基于入弯点出弯点路口自动建模算法 |
3.6.本章小结 |
第四章 语义层中地点识别网络的生成方案 |
4.1.引言 |
4.2.语义层的生成方案 |
4.3.基于NetVLAD的地点识别 |
4.3.1.NetVLAD的网络框架 |
4.3.2.基于三元损失函数的弱监督学习 |
4.4.基于地点的地点识别算法 |
4.4.1.基于金字塔的主相位特征扩展方法 |
4.4.2.P2P距离与损失函数 |
4.5.车端视角对地点识别算法的应用 |
4.5.1.车端视角的特殊性 |
4.5.2.车端地点识别数据集的预处理 |
4.5.3.车端地点识别网络在数据集上的实验结果分析 |
4.6.本章小结 |
第五章 认知地图中车道层和语义层相关实验 |
5.1.实验平台介绍 |
5.1.1.硬件平台介绍 |
5.1.2.软件平台介绍 |
5.2.车道层中车道级地图的矢量化生成实验 |
5.2.1.简单车道的矢量化生成实验 |
5.2.2.路口的矢量化生成实验 |
5.2.3.清水河校区道路矢量化生成实验 |
5.3.语义层中的地点识别网络在校园场景下的验证实验 |
5.3.1.校园数据集 |
5.3.2.地点识别网络的参数配置 |
5.3.3.地点识别实验在校园数据集上的结果分析 |
第六章 总结与展望 |
6.1.全文总结 |
6.2.未来展望 |
致谢 |
参考文献 |
攻读硕士学位期间取得的成果 |
(3)五轴加工线性微小刀具路径的三NURBS保精光顺插值方法研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 课题研究背景及来源 |
1.2 五轴数控技术简介 |
1.2.1 五轴数控技术发展的现状、特点和趋势 |
1.2.2 数控机床加工技术 |
1.3 国内外研究现状及存在问题 |
1.3.1 NURBS曲线插值技术研究现状 |
1.3.2 五轴NURBS曲线刀路光顺插值技术研究现状 |
1.3.3 国内外研究所存在的问题 |
1.4 课题主要研究目的及意义 |
1.5 课题主要研究内容及结构安排 |
第二章 NURBS曲线概念及插值计算 |
2.1 引言 |
2.2 NURBS曲线的概念 |
2.3 NURBS曲线的插值计算 |
2.3.1 数据点的参数化计算 |
2.3.2 节点矢量的计算 |
2.3.3 控制点计算 |
2.4 本章小结 |
第三章 基于曲率自适应选取的NURBS曲线插值方法 |
3.1 引言 |
3.2 NURBS曲线的插值方式探讨 |
3.3 基于自适应特征点选取的NURBS曲线插值方法 |
3.3.1 数据点曲率计算 |
3.3.2 初始特征点的选取 |
3.3.3 数据点添加个数的求解 |
3.3.4 新特征数据点的选取与添加 |
3.4 NURBS曲线插值误差计算 |
3.5 NURBS插值数据点的添加与更新 |
3.6 实际数据计算结果与对比分析 |
3.6.1 插值误差计算的准确性分析 |
3.6.2 NURBS曲线插值结果对比验证 |
3.7 本章小结 |
第四章 五轴三NURBS保精光顺插值方法 |
4.1 引言 |
4.2 三NURBS曲线保精插值的协调数据处理 |
4.2.1 基于刀位数据点的协调数据处理 |
4.2.2 刀心点NURBS曲线插值 |
4.2.3 刀轴矢量点的NURBS曲线插值 |
4.2.4 刀触点的NURBS曲线插值 |
4.2.5 实际数据结果分析 |
4.3 三NURBS保精光顺插值 |
4.3.1 对偶四元数概念和空间变换 |
4.3.2 刀轴矢量的四元数插值 |
4.3.3 五轴刀具路径对偶四元数表达 |
4.3.4 五轴刀轴位姿的对偶四元数表达 |
4.3.5 基于对偶四元数法的五轴三NURBS保精光顺插值 |
4.4 本章小结 |
第五章 五轴加工线性微小刀路光顺插值仿真 |
5.1 引言 |
5.2 数控加工刀位文件的生成 |
5.3 五轴刀具路径处理算法仿真 |
5.3.1 线性刀具路径算法仿真 |
5.3.2 三NURBS刀具路径光顺插值算法仿真 |
5.4 仿真结果分析 |
5.5 本章小结 |
第六章 总结与展望 |
6.1 总结 |
6.2 展望 |
参考文献 |
发表论文情况说明 |
致谢 |
(4)高铁白车身腻子在线检测修磨技术研究及实现(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 课题来源 |
1.2 课题研究背景及意义 |
1.3 国内外机器人在线检测加工研究现状 |
1.4 论文研究的目的与主要内容 |
1.5 论文组织结构 |
2 车体表面缺陷的在线检测 |
2.1 点云的预处理 |
2.2 基于最小二乘拟合的缺陷点云检测 |
2.3 基于欧几里得的高点缺陷聚类 |
2.4 本章小结 |
3 缺陷区域在线轨迹规划 |
3.1 基于B样条曲线曲面的重构 |
3.2 基于重构曲面的轨迹规划 |
3.3 机器人打磨轨迹的优化 |
3.4 本章小结 |
4 机器人自定位打磨 |
4.1 打磨系统整体布局 |
4.2 机器人与视觉系统的手眼标定 |
4.3 基于视觉系统求解导轨偏移量 |
4.4 基于新松机器人库开发的远程控制软件 |
4.5 打磨系统的稳定性 |
4.6 本章小结 |
5 三维软件仿真及现场测试 |
5.1 基于Opencascade开发的机器人仿真软件 |
5.2 现场打磨测试分析 |
5.3 本章小结 |
6 总结 |
6.1 全文总结 |
6.2 研究展望 |
致谢 |
参考文献 |
(5)复杂轮廓曲线零件高质量加工技术的研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 课题研究的背景 |
1.2 复杂轮廓曲线加工相关技术与研究现状 |
1.2.1 复杂轮廓曲线刀具路径全局平滑技术研究现状 |
1.2.2 复杂轮廓曲线刀具路径局部平滑技术研究现状 |
1.2.3 复杂轮廓曲线加工速度规划算法研究现状 |
1.3 研究内容 |
2 复杂轮廓曲线局部刀具路径平滑算法研究 |
2.1 刀具路径拐角过渡曲线的选择 |
2.1.1 参数三次样条曲线 |
2.1.2 B样条曲线 |
2.1.3 非均匀B样条曲线 |
2.2 基于拐角过渡的复杂轮廓曲线刀具路径平滑算法 |
2.2.1 连续微小直线段加工区域识别 |
2.2.2 基于公差带约束的刀位点调整方法 |
2.2.3 刀具路径的平滑转接技术 |
2.2.4 拐角样条曲线最优控制点计算 |
2.3 本章小结 |
3 复杂轮廓曲线全局刀具路径平滑算法研究 |
3.1 全局平滑刀具路径算法研究 |
3.1.1 多项式曲线全局平滑拟合 |
3.1.2 NURBS曲线全局平滑拟合 |
3.2 全局切矢约束的NURBS样条曲线刀具路径生成 |
3.2.1 复杂轮廓曲线刀具路径分段 |
3.2.2 NURBS曲线插值拟合特征点选择 |
3.2.3 NURBS曲线插值拟合预处理 |
3.3 全局切向矢量约束的NURBS曲线插值拟合方法 |
3.4 本章小结 |
4 改进的NURBS曲线插补算法 |
4.1 数控系统插补原理 |
4.1.1 脉冲增量插补 |
4.1.2 数据采样插补 |
4.2 NURBS曲线插补算法 |
4.2.1 NURBS曲线插补数据预处理 |
4.2.2 NURBS曲线实时插补 |
4.2.3 NURBS曲线实时插补步长计算 |
4.3 改进NURBS插补中的速度自适应控制 |
4.3.1 速度规划一 |
4.3.2 速度规划二 |
4.4 本章小结 |
5 实验与仿真 |
5.1 连续微小直线段拐角过渡算法验证 |
5.2 NURBS插值拟合算法以及自适应加减速控制算法验证 |
5.3 本章小结 |
6 总结与展望 |
6.1 总结 |
6.2 展望 |
致谢 |
参考文献 |
附录 攻读硕士学位期间学习阶段成果 |
(6)基于点云数据的曲率急变曲面高精重构方法(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 课题背景及研究意义 |
1.2 研究现状 |
1.2.1 复杂曲面测量方式 |
1.2.2 点云数据分类 |
1.2.3 NURBS曲面重构研究现状 |
1.3 本文研究内容及整体结构 |
2 节点矢量自适应优化算法 |
2.1 引言 |
2.2 NURBS曲面定义和性质 |
2.3 节点矢量优化 |
2.3.1 双三次NURBS曲面插值建立初始曲面 |
2.3.2 虑及曲面几何特征的节点矢量自适应优化算法 |
2.4 实验验证 |
2.4.1 人脸雕塑点云仿真实验 |
2.4.2 高陡度零件点云仿真实验 |
2.5 本章小结 |
3 NURBS曲面局部优化算法 |
3.1 引言 |
3.2 确定重构精度要求 |
3.3 计算点到曲面的最小距离 |
3.4 超差区域局部优化 |
3.4.1 平方距离最小化全局优化 |
3.4.2 平方距离最小化局部优化 |
3.5 实验验证 |
3.5.1 等参数线点云曲面重构 |
3.5.2 环状点云曲面重构 |
3.5.3 散乱点云曲面重构 |
3.6 本章小结 |
4 曲率急变曲面点云曲面重构软件开发 |
4.1 引言 |
4.2 曲面重构软件开发 |
4.2.1 开发工具简介 |
4.2.2 重构软件工作流程 |
4.2.3 重构软件开发过程 |
4.3 综合实例 |
4.4 本章小结 |
结论与展望 |
参考文献 |
攻读硕士学位期间发表学术论文情况 |
致谢 |
(7)水稻叶片几何参数无损测量方法研究(论文提纲范文)
1 材料与方法 |
1.1 试验材料 |
1.2 图像采集工具设计 |
1.3 图像采集 |
1.4 测量系统平台环境 |
1.5 系统工作流程 |
1.6 叶长、叶宽测量 |
1.6.1 B样条曲线的定义给定m+n+1个顶点Di=(d0,d1,…,dm+n),i=0,1,2,…,m+n,称n次参数曲线段: |
1.6.2 过控制点的B样条曲线 |
1.6.3 控制点调整 |
1.6.4 叶长叶宽计算 |
1.7 茎叶夹角测量 |
1.7.1 茎叶器官骨架信息的提取 |
1.7.2 直线检测与茎叶夹角计算 |
1.8 叶面积估测模型 |
1.8.1 数据归一化为了提高运行效率和建模的精度,将不同量纲的数据归一化至区间[0,1],采用的归一化原理如公式(10)。 |
1.8.2 建立叶面积估测模型 |
1.9 模型评价指标 |
2 结果与分析 |
2.1 叶长、叶宽误差 |
2.2 茎叶夹角误差 |
2.3 不同叶面积估测模型方法比较分析 |
3 讨论 |
4 结论 |
(8)B样条曲线的光顺重构研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 引言 |
1.2 逆向工程概述 |
1.3 逆向工程的应用 |
1.4 逆向工程中的曲面重构技术 |
1.4.1 曲面光顺重构技术 |
1.4.2 曲线光顺重构技术 |
1.5 选题背景及主要研究内容 |
1.5.1 选题背景 |
1.5.2 主要研究内容 |
第二章 曲线光顺重构技术的理论基础 |
2.1 引言 |
2.2 数据获取方式 |
2.3 基于B样条曲线的重构技术 |
2.3.1 B样条曲线 |
2.3.2 曲线的逼近拟合 |
2.3.3 B样条曲线的最小二乘重构 |
2.3.4 关于曲线的光顺性评价 |
2.4 实例分析 |
2.5 小结 |
第三章 基于PSO的3次B样条曲线光顺重构技术 |
3.1 引言 |
3.2 基于PSO的3次B样条曲线光顺重构 |
3.2.1 光顺模型建立 |
3.2.2 粒子群算法(PSO) |
3.2.3 控制点调整策略 |
3.2.4 基于PSO的曲线光顺重构过程 |
3.3 光顺重构中的误差分析 |
3.4 应用实例 |
3.5 小结 |
第四章 基于PSO的改进光顺重构技术 |
4.1 引言 |
4.2 B样条曲线的光顺重构 |
4.2.1 光顺模型 |
4.2.2 控制点调整策略 |
4.2.3 基于PSO的光顺重构过程 |
4.3 光顺重构中的误差分析 |
4.4 实例分析 |
4.5 小结 |
第五章 B样条曲线光顺重构实例及其应用 |
5.1 引言 |
5.2 软件介绍 |
5.2.1 MATLAB软件简介 |
5.2.2 Imageware软件简介 |
5.3 实例应用 |
5.3.1 叶片模型重构方案制定 |
5.3.2 叶片模型重构截面轮廓线数据的获取及预处理 |
5.3.3 重构轮廓线数据 |
5.3.4 CAD模型的生成 |
5.4 小结 |
第六章 总结与展望 |
6.1 总结 |
6.2 展望 |
参考文献 |
攻读硕士学位期间发表的学术论文及取得的相关科研成果 |
致谢 |
(9)小波降噪和时空轨迹数据精细化理论及在采油集输监控系统的应用(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 课题来源、背景及意义 |
1.1.1 课题来源 |
1.1.2 研究背景 |
1.1.3 问题提出及意义 |
1.2 国内外研究现状 |
1.2.1 采油集输监控系统 |
1.2.2 现场数据降噪优化 |
1.2.3 产液量计量方法 |
1.2.4 时空轨迹数据处理 |
1.2.5 集输过程故障诊断 |
1.3 研究方法及主要研究内容 |
1.3.1 研究技术路线 |
1.3.2 主要研究内容 |
第2章 现场数据小波降噪理论 |
2.1 傅立叶和小波分析理论 |
2.1.1 傅立叶分析及其局限性 |
2.1.2 小波分析理论 |
2.2 Mallat降噪的原理及步骤 |
2.2.1 Mallat算法 |
2.2.2 现场信号降噪流程 |
2.3 小波阈值降噪理论改进 |
2.3.1 经典阈值及其局限性 |
2.3.2 新阈值 |
2.3.3 经典阈值函数及其局限性 |
2.3.4 改进阈值算法 |
2.4 实例验证与结果分析 |
2.4.1 数据来源与数据预处理 |
2.4.2 小波降噪结果 |
2.4.3 功图效果对比 |
2.5 本章小结 |
第3章 去噪功图计量优化 |
3.1 油井杆柱系统力学建模及求解 |
3.1.1 有杆抽油机组成 |
3.1.2 系统模型建立 |
3.1.3 波动方程求解 |
3.2 产液量计算模型构建 |
3.3 泵功图特征点识别 |
3.3.1 基本形状分析 |
3.3.2 曲率算法 |
3.3.3 有效冲程计算 |
3.4 产液量计算及结果分析 |
3.4.1 计算步骤 |
3.4.2 结果对比分析 |
3.5 本章小结 |
第4章 时空轨迹数据精细化处理算法 |
4.1 时空轨迹数据处理 |
4.1.1 静态误差点处理 |
4.1.2 行驶中大误差奇异点处理 |
4.1.3 偏离路线小误差点处理 |
4.1.4 缺失数据补偿 |
4.2 轨迹曲线拟合方法 |
4.3 轨迹里程算法 |
4.4 实验结果分析 |
4.4.1 测试环境 |
4.4.2 测试结果 |
4.4.3 结果分析 |
4.5 本章小结 |
第5章 基于过程数据的故障识别 |
5.1 故障精确识别方法构架 |
5.2 基于数据阈值的网络层故障检测 |
5.2.1 数据阈值分析方法 |
5.2.2 网络拓扑实时探测算法 |
5.2.3 故障反推演定位方法 |
5.2.4 通信适配器故障 |
5.3 基于数据质量的数据层故障检测 |
5.3.1 离线状态PCA建模 |
5.3.2 在线PCA故障诊断 |
5.4 应用效果与结果分析 |
5.4.1 网络层故障检测 |
5.4.2 数据层结果验证 |
5.5 本章小结 |
第6章 采油集输监控系统开发及应用 |
6.1 采油集输监控系统架构 |
6.1.1 采油集输工艺简介 |
6.1.2 采油集输监控系统架构 |
6.2 联合站监控系统设计 |
6.2.1 系统整体方案 |
6.2.2 现场数据采集 |
6.2.3 监控软件设计 |
6.2.4 系统应用效果 |
6.3 油井监控系统设计 |
6.3.1 系统整体方案 |
6.3.2 现场数据采集 |
6.3.3 监控软件设计 |
6.3.4 系统应用效果 |
6.4 多井智能计量平台设计 |
6.4.1 系统整体构架 |
6.4.2 监控软件设计 |
6.4.3 系统应用效果 |
6.5 偏远井拉运智能监控平台设计 |
6.5.1 系统整体方案 |
6.5.2 监控软件设计 |
6.5.3 系统应用效果 |
6.6 本章小结 |
第7章 结论与展望 |
参考文献 |
攻读博士学位期间发表的学术论文及科研工作 |
致谢 |
(10)基于改进精英克隆选择算法的B样条曲线逼近方法(论文提纲范文)
0 引 言 |
1 B样条曲线逼近数学模型 |
2 改进的ECSA |
1)抗体编码,抗原识别。 |
2)计算抗原亲和力。 |
3)选择和精英选择。 |
4)克隆。 |
5)抗体混沌变异。 |
6)重选择。 |
7)替换。 |
8)重复执行步骤2)~7),直到满足终止条件。 |
3 仿真验证 |
4 实验验证 |
5 结 论 |
四、测量数据的B样条曲线逼近算法(论文参考文献)
- [1]基于三次B样条曲线的一些算法研究[D]. 冯峰. 武汉大学, 2021(12)
- [2]面向自动驾驶的认知地图的自动生成算法与实现[D]. 邵闯. 电子科技大学, 2021(01)
- [3]五轴加工线性微小刀具路径的三NURBS保精光顺插值方法研究[D]. 高飞. 天津工业大学, 2021(08)
- [4]高铁白车身腻子在线检测修磨技术研究及实现[D]. 徐嘉星. 华中科技大学, 2020(01)
- [5]复杂轮廓曲线零件高质量加工技术的研究[D]. 庞飞彪. 西安建筑科技大学, 2020(01)
- [6]基于点云数据的曲率急变曲面高精重构方法[D]. 刘钊. 大连理工大学, 2020(02)
- [7]水稻叶片几何参数无损测量方法研究[J]. 杨红云,路艳,孙爱珍,杨乐. 江西农业大学学报, 2020(02)
- [8]B样条曲线的光顺重构研究[D]. 刘武飞. 上海工程技术大学, 2020(04)
- [9]小波降噪和时空轨迹数据精细化理论及在采油集输监控系统的应用[D]. 刘尊民. 青岛理工大学, 2019
- [10]基于改进精英克隆选择算法的B样条曲线逼近方法[J]. 董祉序,徐方素,孙兴伟,刘伟军. 仪器仪表学报, 2019(11)