一、酒钢1号高炉第三代炉役生产实践(论文文献综述)
李波,聂波,宋惊蛰[1](2021)在《酒钢450m3高炉炉型优化实践》文中进行了进一步梳理酒钢450 m3高炉利用大修机会,引进新技术、新工艺,改善现场安全作业环境,提高企业劳动生产效率,降低高炉能源消耗,结合上下部调整,有力推动了高炉经济技术指标进步。
卢正东[2](2021)在《高炉炉衬与冷却壁损毁机理及长寿化研究》文中研究说明现代高炉的技术方针是“长寿、高效、低耗、优质和环保”,其中“长寿”是实现高炉一切技术目标的基础。针对目前我国高炉普遍存在的炉缸炉底炉衬和高热负荷区域冷却壁的损毁问题,本文以武钢高炉为研究对象,首先确定了高炉炉衬与冷却壁长寿技术研究方法,然后分别研究了炉衬与冷却壁的损毁机理。在此基础上,进一步开展了炉缸结构设计与炉衬选型研究,探讨高热负荷区域铜冷却壁渣皮与热流强度监测系统的开发与应用,并提出了武钢高炉长寿优化措施,全文主要结论如下:武钢4号、5号高炉大修破损调查表明:炉缸炉底侵蚀特征主要表现为炉缸环缝带侵蚀和炉缸炉底象脚状侵蚀。通过炭砖热应力计算和岩相分析,炉缸环缝产生原因在于炉缸径向热应力较大,当炭砖性能较差时会产生微裂纹,在炉内高压下有害元素以蒸汽形式迁移至裂纹处发生液化,并与CO发生反应,生成氧化物、碳酸盐和石墨,形成炉缸环缝侵蚀带。通过炉底死焦柱受力分析与计算,死铁层较浅,死焦柱沉坐炉底,加剧铁水对炭砖侧壁的环流冲刷是造成炉缸炉底象脚状侵蚀的主要原因。针对炉役中期炉底温度异常升高问题,武钢采用钛矿护炉,停炉取样显微分析表明:沉积物中Ti的存在形式主要为Ti C、Ti N、Ti单质,并呈现颗粒皱褶和堆叠形貌,当其附着在炉缸侧壁和炉底时可有效缓解侵蚀进程。武钢生产实践表明,当钒钛矿用量2%~3%时,生铁含钛可达0.10~0.20%,渣铁流动性尚可,炉衬侵蚀速度得到控制。通过武钢5号、1号、7号和6号高炉开展大中修破损调查,对高炉铸铁冷却壁和铜冷却壁开展了力学性能、理化指标和显微结构分析,研究结果表明:铸铁冷却壁主要表现为纵、横裂纹引起的壁体开裂,严重部位存在壁体烧损甚至脱落,其损毁原因主要在于热应力造成的壁体开裂,以及高炉气氛下铸铁基体的氧化与生长。铜冷却壁损毁机理在于:高炉渣皮脱落后,煤气流和炉料与铜冷却壁热面直接接触,使壁体温度升高力学性能下降产生热变形,应力应变长期积累使壁体热面形成微小裂纹,然后在渣铁和煤气的渗透作用下发生熔损和脱落。对于炉腹段铜冷却壁底部水管处的损毁,原因还在于结构设计存在缺陷,冷却壁底部容易受到高温煤气流、渣铁流的冲刷,从而造成壁体的损毁。为满足高炉长寿要求,针对炉缸砌筑结构和炉衬选型问题,通过建立传热模型,采用数值模拟软件计算了高炉全生命周期炉缸传热效果,结果表明:在烘炉阶段,采用停水方式可保证烘炉效果。在炉役初期和中期,不同炉缸结构温度场相近,仅当进入炉役后期,温度差别才逐渐扩大。综合传热计算、热阻分析和建造成本,采用铸铁冷却壁可以满足炉缸传热的需要。针对“铸铁冷却壁+大块炭砖”与“铸铁冷却壁+复合炭砖”两种炉缸结构,研究了炭砖在不同导热系数下的炉缸温度场分布情况。当炉役初期陶瓷杯存在,大块炭砖导热系数为25W/(m·K)时,前者炭砖热面温度为571℃,后者为537℃,可基本杜绝有害元素化学反应的发生;当炉衬热面降至1150℃时,前者耐材残余厚度为850mm,后者为1060mm,均可满足高炉长寿服役要求。针对“铸铁冷却壁+大块炭砖”结构炉缸,研究了冷却比表面积对炉缸温度场的影响。结果表明不同冷却比表面积冷却壁对应的炉衬热面温度差别始终很小,即单纯提高冷却比表面积对降低炉缸温度场作用甚微,故在实际设计时应结合冷却壁制造和冷却水运行成本综合考虑,采用适宜高炉安全经济生产需要的冷却比表面积和水管参数。另外,对炉缸立式和卧式冷却壁优缺点进行了对比分析,从炉缸全周期使用需求考虑,建议采用立式冷却壁。最后,提出了提出了延长高炉炉缸寿命的技术对策及炉缸安全状况的评价方法。针对单独采用热电偶温度或水温差计算热流强度的不足,武钢采取计算和记录冷却壁水温差、热流强度、跟踪热电偶测温数据以及炉役末期炉壳贴片测温相结合的方法综合判断炉缸状况,收效良好。针对高热负荷区域冷却壁的损毁问题,首先对武钢7号高炉铜冷却壁渣皮进行了化学成分、物相形貌、及物理性能研究:其主要物相为黄长石、尖晶石和碳,渣皮中Al2O3含量较高,易形成高熔点的镁铝尖晶石。渣皮流动性温度为1584.1℃,粘度为1000m Pa·s(1550℃),导热系数约为1.5W/(m·K)。然后确定了武钢高炉渣皮厚度、热流强度、炉气温度的计算方法,开发了铜冷却壁渣皮厚度与热流强度监控系统,该系统目前运行稳定,可掌握高炉渣皮波动规律,快速研判高炉渣皮厚度、热流强度及炉型变化趋势,及时调整高炉操作模式。针对炉腹铸铁冷却壁损毁问题,采用增大炉腹冷却壁下部厚度,利用壁体上窄下宽的外型缩小炉腹角,有效遏制了冷却壁的损毁现象;针对炉腹铜冷却壁底部损毁问题,将进水管处改为凸台包覆设计,以防止煤气流从炉腹炉缸衔接处窜入烧坏进水管,从而解决了炉腹段铜冷却壁的损毁问题。冷却壁长寿服役的核心在于保持冷却壁始终处于无过热状态,武钢在高炉生产中,采取控制有害元素入炉,稳定用料结构,保持合理的热制度和造渣制度,通过上下部调剂和强化冷却系统管理,确保冷却壁渣皮厚度合理,从而有效延长了冷却壁的使用寿命。
高成云,孙华平,赵奇强[3](2019)在《马钢1号2500m3高炉本体设计》文中研究表明马钢1号高炉三代炉役大修本体设计以高效、长寿、低耗、智能化为原则。炉型设计上,总结了之前炉型存在的不足,兼收并蓄国内同类型优胜高炉炉型设计特征,通过开炉后的实践验证,该炉型在高效生产和稳定顺行方面具有良好可操控性。内衬设计上,遵循当前主流设计新理念,采用薄壁内衬结构,重点加强炉底炉缸结构设计和内衬材料选择,关键部位采用进口超微孔炭砖,陶瓷杯采用国产大块镶嵌杯结构。冷却结构上,采用全冷却壁加软水冷却,炉腹、炉腰和炉身下部采用铜冷却壁,其余部位采用铸铁冷却。在检测监控方面,配置丰富的传感器和重点监控智能模型,基本实现高炉生产操作"可视化"。
刘金明[4](2016)在《酒钢1、2号高炉优化改造实践》文中研究表明酒钢1、2号高炉利用大修机会,大量引进新技术、新工艺。提高装备水平,有力的推动了高炉经济技术指标进步。
孙春花,秦占邦[5](2016)在《酒钢高炉炉体状况分析》文中认为本文分析了制约酒钢高炉长寿的环节;要实现高炉的长寿,应采用合理的炉型结构和性能良好的耐火材料,选用高效的冷却系统,并对高炉的运行状况进行实时监测;采取高效的操作、维护及管理措施;针对影响现代高炉一代寿命的关键部位,采取多项长寿技术,延长一代炉役寿命。
梁利生[6](2012)在《宝钢3号高炉长寿技术的研究》文中指出延长高炉寿命不仅可以直接减少昂贵的大修费用,而且可以避免由于停产引起的巨大经济损失。延长高炉寿命已经成为广大高炉炼铁工作者重点关注的课题。高炉长寿是一项综合的系统工程,影响因素很多,而高炉一代炉役寿命取决于这些因素的综合效果。本文对宝钢3号高炉长寿技术,从设计制造、施工砌筑、操作管理到检测维护等方面进行了全面系统的研究,形成了具有3号高炉自身特点的长寿综合技术。在认真研究和分析1、2号高炉设计上存在的不足、并吸取世界长寿高炉经验的基础上,对宝钢3号高炉炉型设计、耐材配置、冷却设备选型、检测监控设置等方面进行了研究和优化,并大胆采用了一些长寿新技术,为3号高炉炉况稳定和长寿奠定了基础。宝钢3号高炉在炉型设计时,对设计炉型与操作炉型的结合问题进行了认真的研究,充分考虑到投产后形成实际操作炉型的合理性,特别在高径比、死铁层深度、炉腹角及炉身角等方面进行了优化,并对炉身中下部厚壁与炉身上部薄壁的交界处进行了圆滑过渡的处理,有利于煤气流分布的控制。3号高炉炉体冷却系统采用全铸铁冷却壁形式和纯水密闭循环冷却,按照炉体不同部位的工作环境和工艺要求,配置了不同结构型式的冷却壁和耐火材料炉衬,尤其在炉缸H1-H4段采用了新式高冷却强度横型冷却壁,并配置美国UCAR高导热性小块炭砖,为3号高炉炉缸长期保持良好的状态起到了关键性作用。宝钢3号高炉投产以来,通过强化原燃料质量管理、严格控制碱金属和锌负荷入炉、优化炉料结构,并根据不同时期的生产条件,结合高炉自身特点和难点,不断研究、优化上部装料制度和下部送风制度,控制合适的鼓风动能和炉体热负荷,实现合理的煤气流分布,从而确保3号高炉炉况长期稳定顺行,取得世界一流的技术经济指标和长寿业绩。针对3号高炉投产后冷却壁水管较早出现破损的原因进行了分析,对冷却系统进行了一系列优化改造,大大提高了冷却强度,改善了水质,有效缓解了冷却壁水管的破损。并通过实施安装微型冷却器、硬质压入、人工造壁、整体更换S3、S4段冷却壁等多项长寿维护措施,显着改善了炉身的长寿状况,确保3号高炉炉役中后期仍然保持规整的操作炉型,为强化冶炼创造了条件。在投产后的很长一段时间内,3号高炉的炉缸一直处于良好的状态,没有像1、2号高炉第一代炉役那样一直受炉缸侧壁温度的困扰。然而随着炉役时间的延长,特别是在炉役后期超过设计炉龄后仍然保持长时间的高冶炼强度,炉缸侧壁温度呈现逐步上升的趋势。3号高炉通过进一步提高炉缸冷却强度、加强出铁口状态维护、改善炉缸活跃性、强化炉缸状态监控、炉缸压浆等多项长寿维护措施的研究和实施,保证了3号高炉在炉役后期继续保持强化冶炼的前提下,侧壁温度总体安全受控,从而有效延长了3号高炉的寿命。通过对宝钢3号高炉长寿综合技术的研究和实施,截至2012年10月,宝钢3号高炉已稳定运行了18年,累计产铁量达到6541万吨,单位炉容产铁量达到15036t/m3,目前还在生产中,创造了国内长寿高炉的记录。
秦占邦,张运鸿,师哲[7](2013)在《酒钢1号高炉炉体破损调查》文中研究表明重点对酒钢1号高炉炉身冷却壁破损、炉皮变形开裂、炉缸炭砖侵蚀等进行了破损调查,指出了炉皮变形开裂及冷却壁破损的原因,并提出相应的技术措施。
白兴全,刘发旭,谢勤[8](2013)在《酒钢1号高炉一代炉役生产实践》文中研究说明对酒钢1号高炉一代炉役生产实践进行了总结,并对2002年及2007年年修前的炉体状况、停炉大修前高炉的状况及一代炉役生产技术进步进行了回顾,认为1号高炉达到了设计的技术经济指标。
唐小葳,董会国,王天球[9](2011)在《宝钢1号高炉第三代炉役快速大修出铁场设计》文中认为在宝钢1号高炉第三代炉役快速大修出铁场工艺设计中,解决了原有出铁场存在的问题,改良了出铁场设备性能,改善出铁场的劳动环境,满足高炉生产要求。
马新林[10](2010)在《酒钢1号高炉炉役后期的生产维护》文中认为对酒钢1号高炉炉役后期的生产维护实践进行了总结。通过加强护炉管理、优化操作制度、强化炉体维护、控制适宜煤比和富氧量等一系列措施,取得了良好的护炉效果,炉体冷却设备破损速度得到有效控制,炉底温度及炉缸水温差稳定,为高炉炉役后期安全、高效运行提供了保障。
二、酒钢1号高炉第三代炉役生产实践(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、酒钢1号高炉第三代炉役生产实践(论文提纲范文)
(1)酒钢450m3高炉炉型优化实践(论文提纲范文)
1 引言 |
2 高炉设计技术进步 |
2.1 高炉内型优化升级 |
2.2 增加布袋箱体,改善除尘效果 |
2.3 采用砖壁合一薄内衬技术 |
2.4 优化冷却壁供水方式 |
2.5 设置风口成像监控设施 |
2.6 风口小套设置自动检漏装置 |
2.7 引进炉顶红外摄像仪技术 |
3 高炉生产效果 |
4 结语 |
(2)高炉炉衬与冷却壁损毁机理及长寿化研究(论文提纲范文)
摘要 |
Abstract |
引言 |
第1章 文献综述 |
1.1 现代高炉长寿概况 |
1.2 高炉长寿设计研究进展 |
1.2.1 炉缸结构 |
1.2.2 炉底死铁层 |
1.3 高炉炉衬与冷却壁选材研究进展 |
1.3.1 耐火材料 |
1.3.2 冷却壁 |
1.4 高炉损毁机理研究进展 |
1.4.1 炉缸炉底损毁机理 |
1.4.2 炉体冷却壁损毁机理 |
1.5 高炉传热机理研究进展 |
1.5.1 高炉炉缸炉底传热 |
1.5.2 高炉炉体冷却壁传热 |
1.6 本论文的提出和研究内容 |
1.6.1 论文提出 |
1.6.2 研究内容 |
第2章 高炉损毁机理研究方法 |
2.1 高炉破损调查 |
2.1.1 破损调查内容 |
2.1.2 破损调查方法 |
2.2 实验研究方法 |
2.2.1 炭砖表征 |
2.2.2 冷却壁表征 |
2.2.3 渣皮表征 |
2.3 高炉炉衬与冷却壁传热性能研究 |
2.3.1 传热模型建立 |
2.3.2 模型验证 |
第3章 武钢高炉炉缸炉底损毁机理研究 |
3.1 高炉炉缸炉底损毁特征分析 |
3.1.1 武钢4 号高炉破损调查(第3 代) |
3.1.2 武钢5 号高炉破损调查(第1 代) |
3.2 炉缸炉底损毁机理研究 |
3.2.1 炉缸环缝侵蚀 |
3.2.2 炉缸炉底象脚区域损毁 |
3.3 高炉钛矿护炉研究 |
3.3.1 Ti(C,N)形成热力学分析 |
3.3.2 破损调查取样与表征 |
3.3.3 武钢高炉钛矿护炉效果分析 |
3.4 本章小结 |
第4章 武钢高炉冷却壁损毁机理研究 |
4.1 高炉冷却壁损毁特征分析 |
4.1.1 武钢5 号高炉破损调查(第1 代) |
4.1.2 武钢1 号高炉破损调查(第3 代) |
4.1.3 武钢7 号高炉破损调查(第1 代) |
4.1.4 武钢6 号高炉破损调查(第1 代) |
4.2 球墨铸铁冷却壁损毁机理研究 |
4.2.1 力学性能分析 |
4.2.2 显微结构分析 |
4.2.3 损毁机理分析 |
4.3 铜冷却壁损毁机理研究 |
4.3.1 力学性能分析 |
4.3.2 理化指标分析 |
4.3.3 显微结构分析 |
4.3.4 损毁机理分析 |
4.4 本章小结 |
第5章 武钢高炉炉缸内衬设计优化研究 |
5.1 高炉炉缸全生命周期温度场分析 |
5.1.1 烘炉阶段炉缸温度场 |
5.1.2 炉役初期炉缸温度场 |
5.1.3 炉役全周期炉缸温度场 |
5.1.4 炉役自保护期炉衬厚度 |
5.2 炉缸传热体系结构优化研究 |
5.2.1 炉缸炭砖传热体系优化 |
5.2.2 炉缸冷却结构优化 |
5.3 高炉炉缸长寿化设计与操作 |
5.3.1 炉缸结构设计和选型 |
5.3.2 高炉炉缸长寿操作技术 |
5.4 本章小结 |
第6章 武钢高炉冷却壁长寿优化研究 |
6.1 高炉冷却壁渣皮特性及行为研究 |
6.1.1 渣皮物相组成及微观结构研究 |
6.1.2 渣皮流动性分析 |
6.1.3 渣皮导热性能及挂渣能力分析 |
6.2 高炉冷却壁渣皮行为监测研究 |
6.2.1 渣皮厚度及热流强度计算 |
6.2.2 铜冷却壁渣皮监测系统研究 |
6.3 高炉冷却壁长寿技术对策研究 |
6.3.1 高炉冷却壁长寿设计优化 |
6.3.2 高炉冷却壁操作优化 |
6.3.3 高炉冷却壁渣皮厚度管控技术 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 展望 |
本论文主要创新点 |
致谢 |
参考文献 |
附录1 攻读博士学位期间取得的科研成果 |
附录2 攻读博士学位期间参加的科研项目 |
(4)酒钢1、2号高炉优化改造实践(论文提纲范文)
1 概述 |
2 高炉设计技术进步 |
2.1 优化高炉内型 |
2.2 除尘设施升级换代 |
2.3 采用热转鼓法渣处理新技术 |
2.4 配套干式TRT发电装置 |
2.5 料罐放散增设消音、除尘设施 |
2.6 采用软水密闭循环技术 |
2.7 减压阀组增设消音器 |
2.8 提高炉顶压力 |
2.9 采用铜冷却壁技术 |
2.1 0 软水密闭循环系统自动检测 |
2.1 1 设置风口小套检漏装置 |
2.1 2 引进风口成像技术 |
2.1 3 天车实现遥控操作 |
2.1 4 引进风口自动拆卸装置 |
3 高炉生产效果 |
4 结语 |
(5)酒钢高炉炉体状况分析(论文提纲范文)
1 概况 |
2 高炉长寿的限制性环节 |
3 高炉一代炉役短寿的原因分析 |
3.1 炉身冷却壁破损 |
3.1.1 炉身冷却壁破损机理 |
3.1.2 炉身冷却壁破损原因分析 |
3.1.3 原燃料质量影响 |
3.2 炉缸炭砖侵蚀 |
3.2.1 炉缸炭砖侵蚀机理 |
3.2.2 炉缸炭砖质量较差 |
3.2.3 铁口管理不到位 |
3.2.4 施工质量差 |
4 7号高炉存在问题的原因分析 |
4.1 送风系统出现的问题 |
4.2 冷却壁破损原因分析 |
4.2.1 5段冷却水管破损分析 |
4.2.2 8段铜冷却壁破损的原因分析 |
4.2.3 9段冷却壁水管破损分析 |
4.3 炉缸炭砖侵蚀 |
4.3.1 炭砖质量较差 |
4.3.2 冷却壁漏水对炭砖的侵蚀 |
5 近几年炉体维护技术 |
5.1 提高冷却水量,保证冷却强度 |
5.2 炉缸热流强度超标,钒钛料护炉 |
5.3 规范炉前操作工作,保证铁口深度 |
5.4 新技术应用 |
5.5 优化设计 |
6 炉体长寿的建议 |
(6)宝钢3号高炉长寿技术的研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 高炉炼铁概述 |
1.1.1 我国现代高炉炼铁技术发展概况 |
1.1.2 世界大型高炉概况 |
1.1.3 高炉炼铁原理及工艺概况 |
1.2 高炉长寿概述 |
1.2.1 国内外高炉长寿概况 |
1.2.2 高炉长寿限制性环节 |
1.2.3 高炉炉缸烧穿事故 |
1.3 课题提出与研究内容 |
1.3.1 课题提出 |
1.3.2 研究内容 |
第2章 宝钢3号高炉长寿设计技术 |
2.1 高炉炉型设计 |
2.1.1 合适的高径比(Hu/D)及死铁层深度 |
2.1.2 合理的炉腹角(A)及炉身角(B) |
2.2 高炉炉衬设计 |
2.2.1 炉缸、炉底耐材设计 |
2.2.2 风口及炉腹 |
2.2.3 炉腰及炉身 |
2.3 高炉冷却系统设计 |
2.3.1 冷却设备形式 |
2.3.2 冷却系统类型 |
2.4 高炉检测系统设计 |
2.4.1 冷却系统的检测 |
2.4.2 炉体炉缸温度的检测 |
2.5 宝钢3号高炉设计的改进方向 |
2.6 小结 |
第3章 宝钢3号高炉制造及施工技术 |
3.1 宝钢3号高炉冷却壁制造技术 |
3.1.1 原料化学成分控制 |
3.1.2 球化剂的选择 |
3.1.3 冷却水管材质及防渗碳处理 |
3.2 宝钢3号高炉炉缸耐材施工技术 |
3.2.1 炉缸炭砖砌筑标准 |
3.2.2 宝钢3号高炉炉缸炭砖施工技术 |
3.2.3 砌筑质量对炉缸长寿的影响 |
3.3 制造及施工的改进方向 |
3.4 小结 |
第4章 宝钢3号高炉稳定操作技术 |
4.1 原燃料质量管理 |
4.1.1 提高原燃料质量,优化炉料结构 |
4.1.2 严格控制入炉碱金属和锌负荷 |
4.2 优化煤气流分布,确保炉况稳定 |
4.2.1 宝钢3号高炉操作难点 |
4.2.2 优化装料制度,保证煤气流分布合理 |
4.2.3 优化操业参数,控制炉体热负荷稳定合适 |
4.2.4 优化送风制度,控制适宜的鼓风动能 |
4.2.5 调整效果 |
4.3 精心操作,趋势管理,确保炉温稳定充沛 |
4.3.1 炉温管理标准及调节手段 |
4.3.2 炉温趋势管理 |
4.4 优化炉渣成分 |
4.5 强化设备管理,降低休风率 |
4.6 宝钢3号高炉操作实绩 |
4.7 小结 |
第5章 宝钢3号高炉炉身维护技术 |
5.1 宝钢3号高炉冷却壁破损状况及原因分析 |
5.1.1 冷却壁破损状况 |
5.1.2 冷却壁破损的原因分析 |
5.2 宝钢3号高炉冷却系统优化 |
5.2.1 提高水量水压,提高冷却强度 |
5.2.2 增设脱气罐,提高脱气功能 |
5.2.3 优化水处理技术、改善水质 |
5.3 炉身长寿维护技术 |
5.3.1 安装微型冷却器 |
5.3.2 硬质压入及人工造壁 |
5.3.3 整体更换冷却壁 |
5.3.4 破损冷却壁的及时发现和分离 |
5.4 小结 |
第6章 宝钢3号高炉炉缸维护技术 |
6.1 炉缸长寿维护操作 |
6.1.1 合理炉缸冷却强度控制 |
6.1.2 合理的出渣铁制度及铁口状态维护 |
6.1.3 炉缸活跃性控制 |
6.2 炉缸状态监控 |
6.2.1 加装炉缸电偶 |
6.2.2 水系统安装高精度电阻 |
6.2.3 完善炉缸炉底侵蚀模型 |
6.2.4 建立炉缸炉底残厚计算模型 |
6.3 炉缸压浆 |
6.3.1 大套下压浆 |
6.3.2 铁口压浆 |
6.3.3 炉缸压浆 |
6.4 小结 |
第7章 结论 |
参考文献 |
致谢 |
攻读学位期间发表成果 |
作者简介 |
(8)酒钢1号高炉一代炉役生产实践(论文提纲范文)
1 高炉主要装备情况 |
2 投产以来技术经济指标 |
3 2002年及2007年年修前的炉体状况 |
3.1 2002年年修前的状况 |
3.2 2007年年修前的状况 |
4 停炉大修前高炉的状况 |
4.1 冷却壁破损严重 |
4.2 炉皮开裂、炉身煤气严重超标 |
4.3 炉缸侵蚀严重 |
4.4 运行成本高 |
5 一代炉役生产技术进步回顾 |
5.1 精料水平不断提高 |
5.2 基本操作制度逐步稳定 |
5.3 护炉技术日臻完善 |
5.4 设备保障能力不断提高 |
6 结语 |
(10)酒钢1号高炉炉役后期的生产维护(论文提纲范文)
1 高炉内衬及冷却结构 |
2 炉体状况 |
3 炉役后期的生产维护 |
3.1 强化护炉管理 |
3.2 优化操作制度 |
3.3 坚持含钛料护炉 |
3.4 强化炉体维护 |
3.5 控制适宜喷煤量和富氧率 |
4 效果 |
5 结语 |
四、酒钢1号高炉第三代炉役生产实践(论文参考文献)
- [1]酒钢450m3高炉炉型优化实践[J]. 李波,聂波,宋惊蛰. 甘肃冶金, 2021(03)
- [2]高炉炉衬与冷却壁损毁机理及长寿化研究[D]. 卢正东. 武汉科技大学, 2021(01)
- [3]马钢1号2500m3高炉本体设计[A]. 高成云,孙华平,赵奇强. 2019年全国炼铁设备及设计年会论文集, 2019
- [4]酒钢1、2号高炉优化改造实践[J]. 刘金明. 甘肃冶金, 2016(06)
- [5]酒钢高炉炉体状况分析[J]. 孙春花,秦占邦. 甘肃冶金, 2016(03)
- [6]宝钢3号高炉长寿技术的研究[D]. 梁利生. 东北大学, 2012(07)
- [7]酒钢1号高炉炉体破损调查[J]. 秦占邦,张运鸿,师哲. 炼铁, 2013(05)
- [8]酒钢1号高炉一代炉役生产实践[J]. 白兴全,刘发旭,谢勤. 炼铁, 2013(03)
- [9]宝钢1号高炉第三代炉役快速大修出铁场设计[J]. 唐小葳,董会国,王天球. 炼铁, 2011(02)
- [10]酒钢1号高炉炉役后期的生产维护[J]. 马新林. 炼铁, 2010(05)